Exploratory Synthesis: Nitrides

Mark Bailey-Glenn Seaborg Distinguished Postdoc, J.F. Mitchell Materials Science Division, Argonne National Laboratory

New Program in Materials Synthesis

- New materials present an opportunity for breakthrough advances in properties.
- Is oxygen important? i.e., the synthesis of complex nitrides will allows us to test the role of the anion in complex oxides.

Nitrides

Introduction

- The N≡N is 500 kJ/mol stronger than the O=O bond.
- Most transition metal-nitrogen bonds are relatively weak.

Therefore, AHO is smaller for transition metal nitrides than for oxides: a given metal nitride will decompose at a lower temperature than its oxide:

This low decomposition temperature (T_d) enforces a low reaction temperature and prohibitively slow reaction kinetics!

Currently

Because of the thermodynamic and kinetic limitations, there are only ~15 known ternary R,T,N, (R = rare earth, T = Cr, Mn, V, Nb, Ta) compounds. Despite this scarcity, the structures are intriguing; e.g.,

High pressure synthesis is ideal

- . The important factor is Peq, the equilibrium N2 partial pressure:
- is ≤ 70 kJ(mole N)-1 · Application of 6 GPa raises the stability regime by ~ 600 K, into
- · We will use high pressure to synthesize Lay-{Mn, Ni, Co, Cu}y-Ny.

and reactions can occur.

Boron-Nitrides

· There are currently ~ 5 known

Introduction

 $A_{\nu}T_{\nu}B_{\nu}N_{\nu}$ (A = electropositive element, T = transition metal) compounds:

> La₃Ni₂B₂N₃ La₃Co₂B₂N₃ LaNiBN CaNiBN CaPdBN

- · All are layered structures.
- La₃Ni₂B₂N₃ is a superconductor with T_c of 13 K.

 Li₃BN₂ melts congruently at 1189 K We intend to exploit Li₃BN₂ as a reactive flux for quaternary A, T, B, N, compounds

Both systems have very few members; however, many of these compounds have interesting and compelling crystal structures.

